CSC108H Lecture 22

Dan Zingaro

November 2, 2012



Choosing Test Cases

v

We generally cannot call a function with all possible inputs

» e.g. if a function takes an integer as a parameter, there are an
infinite number of values with which the function can be called

v

Luckily, the number of tests we run is not as important as
choosing good test cases

v

We can divide all possible inputs into meaningful categories

» Then, we choose a representative test from each category



ConcepTest

def our_max(numl, num2):
’7 (number, number) -> number

Return the larger of numl and num2.
PP A

Of the following sets of test cases, which one is best?

» A (2, 3), (2, 2), (-4, -5), (1.2, 1.2), (1.2, 1.5)
), (2, 2), (4, 4), (6, 6), (-4, -5), (1.2, 1.2), (1.2, 1.5)
), (2, 2), (3, 2), (-4, -5), (1.2, 1.2), (1.2, 1.5)
)., (3,2), (



ConcepTest

def insert_after(L, nl, n2):
?22(1list of int, int, int) -> NoneType

Insert n2 after each occurrence of nl in L.
PP R

Start from the top and consider each test in order. Vote for the
letter of the first test that adds nothing to what was covered by
the previous tests.
» A. (]2, 4, 6], 3, 8)
B. ([2, 4, 6], 4, 8)
C.([2, 4, 2], 2,8)
D. ([2, 4, 4, 2], 2, 8)
E. ([2, 2], 2, 8)

v

v

v

v



ConcepTest

def insert_after(L, nl, n2):
>?2(1list of int, int, int) -> NoneType

Insert n2 after each occurrence of nl in L.
)

Start from the top and consider each test in order. Vote for the
letter of the first test that adds nothing to what was covered by
the previous tests.

> A ([1], 3, 8)
> B. ([5], 3, 8)
» C.([5 6, 7], 5, 8)
» D. ([5 6, 7], 2 8)



Example: Dictionary Function

Provide a set of test cases for this function.

def inc_count(d, k):
?27(dict of {object:int}, object) -> NoneType
k is immutable. Increment the value associated with k
in d. If k is not a key in d, add k with value 1.

23



ConcepTest

def indices(big, small):
>0 (str, str) -> list of int
Return the indices of big at which non-overlapping
copies of small start. small is non-empty.

>>> indices(’A Coool pool look’, ’00’)
[3, 9, 14]

1)

Of the following sets of test cases, which one is best?

» A. (°?, ’a’), (’cool pool’, ’00’),
(’cool pool’, ’pp’)

» B. (°?, ??), (’cool pool’, ’00’)
(’cool pool’, ’pp’)

» C. (’cool pool’, ’00’), (’cool pool’, ’pp’)

» D. (0, ’a’), (°?, ??), (°’cool pool’, ’00’),
(’cool pool’, ’pp’)



Example: Indices

For which tests does this bad implementation fail? How can it be
fixed?

def indices(big, small):
’79(str, str) -> list of int
Return the indices of big at which
non-overlapping copies of small start.

>>> indices(’A Coool pool look’, ’00’)

[3, 9, 14]

PPN

index = 0

indices = []

while index != -1:
indices.append(big.find(small, index))
index = big.find(small, index + len(small))

return indices



