
CSC108: Using unittest

Daniel Zingaro
University of Toronto

daniel.zingaro@utoronto.ca

November 2012

1 Revisiting Docstring Examples

So far, we’ve discussed including an example or two in our docstrings. Those examples
serve two purposes:

• Giving the reader of help an example of how the function works, and

• Using doctest to automatically test these examples to make sure that the function
works in those cases.

At the same time, we’ve also discussed providing comprehensive test suites, where
we come up with categories of function calls and test the function with one example from
each category.

For example, remember this function?

def num_vowels(s):

’’’(str) -> int

Return number of vowels in s.

>>> num_vowels(’Europe’)

4

’’’

counter = 0

for char in s:

if char in ’aeiouAEIOU’:

counter = counter + 1

return counter

To comprehensively test this function, we’d want to consider categories such as these:

• Empty string

• String of no vowels

1



• String of one vowel

• String of multiple vowels

• String of consonants and vowels

• String with nonalphabetic characters and vowels

• String with lowercase and uppercase vowels

We don’t want to add tests for each of these categories to the docstring. This would make
the docstring very long, and the purpose of docstrings is documentation (not thorough
testing).

Instead, to write a test suite for one or more functions, we will use the unittest mod-
ule. (Our docstrings will continue to include one or two examples, of course.)

2 Using unittest

unittest is a built-in Python module that automatically runs all tests in a test file. Carry
out the following steps to use this module:

1. Create a new Python file that starts with the word test. For example, for the vowels
example, you could call it test_vowels.py. In general, call it test_x.py, where x is
the name of the module whose functions you are testing.

2. In your test file, start by importing the unittest module: import unittest.

3. Next, import the functions you want to test. This can take two forms

• import vowels, or

• from vowels import num_vowels

The latter allows you to refer to num_vowels rather than vowels.num_vowels.

4. Now, for each function you want to test, create a new class named Test_x, where x

is the name of the function you are going to test in this class. The class must inherit
from unittest.TestCase.

Here’s what we have so far in test_vowels.py:

import unittest

from vowels import num_vowels

class Test_num_vowels(unittest.TestCase):

5. Now, for each test case, create a new method inside of that class. Name the function
test_x, where x is a description of the test case. For example, when testing the
“empty string” category for num_vowels, name the method test_empty_string. The
method should take no parameters, so use (self) as its parameter list.

2



6. Each method should make a call to one of the assertXxx methods that is available
as a result of inheriting from unittest.TestCase. One such method is assertEqual,
which takes three parameters: a first value, a second value, and a message to print if
those values are not equal. Typically, the first value comes from a call to the function
and the second is hard-coded. Here is a method that tests whether num_vowels

works properly with the empty string.

def test_empty_string(self):

self.assertEqual(num_vowels(’’), 0,

’empty string’)

7. Continue adding test-case methods to the class, one method per test case. Use
assertEqual whenever you want to test that the function returns the expected value.
You can also use assertTrue or assertFalse if the function returns a Boolean value.
assertTrue and assertFalse take only two parameters: a value (returned from a
call to the function) and a message to print if the function does not return True (for
assertTrue) or False (for assertFalse).

8. If you are testing more than one function, do not place tests for multiple functions
in the same class. Instead, create one class per function, and repeat the steps you
followed above for creating a class and its methods.

9. At the bottom of your test module, add the following line:
unittest.main(exit=False) Then, run your test module.

Here is a working test module for testing num_vowels. It contains only two tests, so it
is not comprehensive (more tests are required, since we’ve only given examples for two
of the num_vowels categories here).

import unittest

from vowels import num_vowels

class Test_num_vowels(unittest.TestCase):

def test_empty_string(self):

self.assertEqual(num_vowels(’’), 0,

’empty string’)

def test_one_vowel(self):

self.assertEqual(num_vowels(’e’), 1,

’string of one vowel’)

unittest.main(exit=False)

3



3 Exercise

Add the following function to vowels.py:

def any_vowels(s):

’’’(str) -> bool

Return True iff s contains at least one vowel.

’’’

return num_vowels(s) > 0

Add a new class to test_vowels.py that tests this function on two test cases.

4 Interpreting Test Results

Running test_vowels.py presents you with information on the tests that past and failed.

• The first line includes one character per test, so you should see a line of four char-
acters as the first line of output. Each character will be a . (pass), F (fail), or E

(error). Fail is different from error: fail means that your test failed to return the
proper value, whereas error means that there is a problem running the test case.
For example, if you forgot to add any_vowels to your import statement at the top of
test_vowels.py, you’ll see two Es on the first line of output.

• For any tests that produced an error or that failed, you’ll see output telling you the
name of the test method that failed, the output that the function produced in contrast
to the expected output, and your message from the assertXxx method call.

• The bottom of the output tells you the total number of tests that were run and how
many of those failed or errored.

5 Testing Functions that Return None

Recall this function:

def insert_after(L, n1, n2):

’’’(list of int, int, int) -> NoneType

Insert n2 after each occurrence of n1 in L.

’’’

i = 0

while i < len(L):

if L[i] == n1:

L.insert(i+1, n2)

i += 1

i += 1

4



This function returns None. (It has no return statement, and the value returned auto-
matically by such functions is None.) It is therefore incorrect to write a unittest test case
that looks something like:

def test_empty_list(self): # incorrect

self.assertEqual(insert_after([], 2, 3), [],

’empty list’)

The reason this is wrong is because the insert_after function returns None, whereas
the assertEqual method is expecting a return value of []. Therefore, this test will always
fail.

Instead, what we have to do is set up a variable referring to a list, call insert_after
on that list, then check that the variable refers to the modified list:

def test_empty_list(self): # correct

lst = []

insert_after(lst, 2, 3)

self.assertEqual(lst, [],

’empty list’)

6 Exercise

Save the insert_after function in a file named insert.py. Then, in file test_insert.py,
write two test cases for insert_after.

5


