
CSC108H Lecture 22

Dan Zingaro

November 2, 2012



Choosing Test Cases

I We generally cannot call a function with all possible inputs
I e.g. if a function takes an integer as a parameter, there are an

infinite number of values with which the function can be called

I Luckily, the number of tests we run is not as important as
choosing good test cases

I We can divide all possible inputs into meaningful categories

I Then, we choose a representative test from each category



ConcepTest

def our_max(num1, num2):

’’’(number, number) -> number

Return the larger of num1 and num2.

’’’

Of the following sets of test cases, which one is best?

I A. (2, 3), (2, 2), (-4, -5), (1.2, 1.2), (1.2, 1.5)

I B. (2, 3), (2, 2), (4, 4), (6, 6), (-4, -5), (1.2, 1.2), (1.2, 1.5)

I C. (2, 3), (2, 2), (3, 2), (-4, -5), (1.2, 1.2), (1.2, 1.5)

I D. (2, 3), (3, 2), (2, 2)



ConcepTest

def insert_after(L, n1, n2):

’’’(list of int, int, int) -> NoneType

Insert n2 after each occurrence of n1 in L.

’’’

Start from the top and consider each test in order. Vote for the
letter of the first test that adds nothing to what was covered by
the previous tests.

I A. ([2, 4, 6], 3, 8)

I B. ([2, 4, 6], 4, 8)

I C. ([2, 4, 2], 2, 8)

I D. ([2, 4, 4, 2], 2, 8)

I E. ([2, 2], 2, 8)



ConcepTest

def insert_after(L, n1, n2):

’’’(list of int, int, int) -> NoneType

Insert n2 after each occurrence of n1 in L.

’’’

Start from the top and consider each test in order. Vote for the
letter of the first test that adds nothing to what was covered by
the previous tests.

I A. ([1], 3, 8)

I B. ([5], 3, 8)

I C. ([5, 6, 7], 5, 8)

I D. ([5, 6, 7], 2, 8)



Example: Dictionary Function

Provide a set of test cases for this function.

def inc_count(d, k):

’’’(dict of {object:int}, object) -> NoneType

k is immutable. Increment the value associated with k

in d. If k is not a key in d, add k with value 1.

’’’



ConcepTest

def indices(big, small):

’’’(str, str) -> list of int

Return the indices of big at which non-overlapping

copies of small start. small is non-empty.

>>> indices(’A Coool pool look’, ’oo’)

[3, 9, 14]

’’’

Of the following sets of test cases, which one is best?

I A. (’’, ’a’), (’cool pool’, ’oo’),
(’cool pool’, ’pp’)

I B. (’’, ’’), (’cool pool’, ’oo’),
(’cool pool’, ’pp’)

I C. (’cool pool’, ’oo’), (’cool pool’, ’pp’)

I D. (’’, ’a’), (’’, ’’), (’cool pool’, ’oo’),
(’cool pool’, ’pp’)



Example: Indices

For which tests does this bad implementation fail? How can it be
fixed?

def indices(big, small):

’’’(str, str) -> list of int

Return the indices of big at which

non-overlapping copies of small start.

>>> indices(’A Coool pool look’, ’oo’)

[3, 9, 14]

’’’

index = 0

indices = []

while index != -1:

indices.append(big.find(small, index))

index = big.find(small, index + len(small))

return indices


