
CSC108H: Dictionary Exercises

Dan Zingaro

October 2012



Example 1: List Occurrences

def count_occurrences(L):

’’’(list of v) -> dict of {v:int}

return a dictionary in which the keys are

the items in L and their associated values

are integers denoting the number of times the item is

contained in L.

>>> count_occurrences([8, 9, 8, 8, 9])

{8:3, 9:2}

’’’



Example 2: Folding Dictionaries

def fold(d1, d2):

’’’(dict, dict) -> dict

Return a new dictionary that contains all (b, c)

such that (a, b) is in d1 and (a, c) is in d2.

>>> fold({1:4, 9:10}, {4:5})

{4:5}

’’’

Is the folded dictionary guaranteed to be unique?



Example 3: Sum of List Values

def combine(d1, d2):

’’’(dict of {v:list of int}, dict of {w:list of int}) ->

dict of {x:int}

Return the dictionary where each key is a key

that is in both d1 and d2.

The value associated with each key in the new

dictionary is the sum of all the integers associated

with that key in d1 and d2.

>>> combine({1:[2], 4:[5, 6]}, {4:[8]}

{4:19}

’’’



Sparse Matrices

I A sparse matrix is a matrix whose entries are almost all zero 0 0 4
0 0 0
0 3 0


I Storing sparse matrices as lists of lists can waste a lot of

memory

I Alternative: use a dictionary whose keys are (row, column)
tuples and whose values are the values at those coordinates

I e.g. for the above: {(0, 2):4, (2,1):3}



Sparse Matrices...

To add two matrices, we add their corresponding components 0 0 4
0 0 0
0 3 0

 +

 0 0 1
0 12 0
0 0 0


=

 0 0 5
0 12 0
0 3 0


Write a function that takes two sparse matrices stored as
dictionaries and returns a new dictionary representing their sum


