
CSC108H Lecture 12

Dan Zingaro

October 5, 2012



String Comparisons

I We can use relational operators such as < and > on strings

I There is a well-defined ordering on strings: a comes before b
which comes before c etc.

I There is also an ordering for the uppercase characters, and for
digits

I Strings are compared from left to right using character codes
I ord converts characters to codes
I chr converts codes to characters

I If one string is a prefix of another, it is considered <



ConcepTest

ch = ’w’

val = ord(’a’) + 6 - (ord(’z’) - ord(ch) + 1)

mystery = chr(val)

What is the value of mystery?

I A. ’a’

I B. ’b’

I C. ’c’

I D. ’d’

I E. ’e’



ConcepTest

ch = ’x’

val = ord(’a’) + 4 - (ord(’z’) - ord(ch) + 1)

mystery = chr(val)

What is the value of mystery?

I A. ’a’

I B. ’b’

I C. ’c’

I D. ’d’

I E. ’e’



String Formatting

>>> ’I got {0}% on the test’.format(40 / 80 * 100)

’I got 50.0% on the test.’

>>> ’I got {m}% on the test’.format(m=40 / 80 * 100)

’I got 50.0% on the test’

I a format string contains fields like {0} or {m}

I Fields can be positional (numeric) or named

I Fields are replaced by the arguments to format



String Formatting...

I For argument n
I Use {n} to insert the argument as-is
I Use {n:w} for minimum width w
I Use {n:.p} for precision p
I Use {n:w.p} for minimum width w and precision p

I Precision is the number of digits to produce; accepted only for
floats



ConcepTest

What is printed by this code?

s1 = ’0’

s2 = ’a{’ + s1 + ’}b’

print(s2.format(4))

I A. a{0}b

I B. ab

I C. a4b

I D. The code does not run



Example 1

Complete the following function according to its docstring.

def rep_chars(s, num):

’’’(str, int) -> str

Return a string consisting of each character of s

repeated num times.

>>> rep_chars(’abc’, 2)

’aabbcc’

’’’



Example 2
Consider strings where each character is one of the following three
characters:

I g for “good”

I b for “bad”

I u for “unusable”

The goodness of a string follows these two rules:

I The goodness of a string containing one or more us is 0.

I Otherwise, the goodness of a string is equal to the number of
gs in the string.

For example, the goodness of "gbbgb" is 2, and the goodness of
"gubgb" is 0.

def goodness(s):

’’’(str) -> int

Return goodness of s.

’’’


