
CSC108H Lecture 24

Dan Zingaro

November 7, 2012



Students in Lists

I Suppose we want to store students’ names, their year, and
their most recent three course marks

I Perhaps we could use a nested list

students = [

[’Dan’, 4, [80, 82, 6]],

[’Joe’, 2, [49, 48, 82]]

]

However:

I We are imposing unnecessary order on the elements (why is
year second and marks third?)

I The elements do not have names

I No convenient way to print students

I Not easy to support multiple types of students (e.g. first-year
students may have no prior course marks)



Students in Dictionaries

I If we use a nested dictionary instead, we can use strings
instead of indices to refer to the students

I However, still no flexibility to support different kinds of
students

I Also no way to ask a student to “do something” (like
calculate average mark)

students = {

’Dan’:{’name’:’Dan’, ’year’:4, ’marks’:[80, 82, 6]},

’Joe’:{’name’:’Joe’, ’year’:2, ’marks’:[49, 48, 82]}

}



Classes and Methods

I Sometimes, the built-in objects are not natural for supporting
new types of data

I By defining a new class, we can add a new type to Python

I We can then make objects of that type (e.g. objects of type
Student)

I Class names are nouns: student, course, rectangle, animal,
ship, (and str, list, dict!)

I Methods are actions specific to each type of object
I e.g. for ship: move, turn, shoot, dodge, raise shields, lower

shields, teleport



Attributes

I An attribute is a feature or characteristic of an object

I Unlike a method, it is not an action

I An attribute is something that an object has, not something
the object does

Class name: Ship

Possible methods: move, turn, shoot, dodge, raise_shields,
lower_shields, teleport
Possible attributes: weight, length, width, direction,
num_bullets



ConcepTest

Which of the following is not a possible method for a Car class?

I A. open_window

I B. accelerate

I C. num_wheels

I D. turn_right

I E. apply_brakes



ConcepTest

Which of the following is not a possible method for a Person

class?

I A. hair_colour

I B. climb_stairs

I C. speak

I D. walk

I E. jump



Creating Objects

I When an object is created, its __init__ method is called

I __init__ is known as a constructor because it constructs
objects

I Inside __init__, assign values to the object’s attributes

I For example, consider a Point class whose objects store x-
and y-coordinates for a two-dimensional point

I The two required attributes are x and y



Creating Objects...

class Point(object):

’’’Two-dimensional points’’’

def __init__ (self):

’’’() -> Point

Create two-dimensional point

’’’

self.x = 0

self.y = 0

I Don’t forget the self. before each attribute

I In all methods you write, self means “current object”

I You can create a point using e.g. p = Point()

I p.x and p.y access the attributes of p



ConcepTest

What is the output of this code?

p1 = Point()

p1.x += 2

p1.y += 3

p2 = Point()

p2.x += 4

print(p2.x, p2.y)

I A. 4 0

I B. 0 0

I C. 7 3

I D. 2 3



Creating Objects with Parameters

A Point that always starts at (0, 0) may not be as useful as a
Point that can start at a specified location.

class Point(object):

’’’Two-dimensional points’’’

def __init__ (self, x, y):

’’’(int, int) -> Point

Create two-dimensional Point at (x, y)

’’’

self.x = x

self.y = y

I Now, you create a Point using e.g. p = Point(2, 5)

I p.x and p.y then have these initial values


