
CSC108H Lecture 31

Dan Zingaro

November 23, 2012

Measuring Runtime of Algorithms

I We want to understand how the execution time for an
algorithm increases when the problem size increases

I One approach: measure the execution time on different-sized
problems

I We can do this with our Maximum Segment Sum algorithms

I We will see that Awful grows much more quickly than Bad
and that Bad grows more quickly than Cool

Measuring Runtime: the Problem

I Precise runtimes may not be useful as a way to describe
algorithm performance

I They depend on the specific machine on which the program is
being run

I So in addition to runtime, we’d have to include information
about OS, processor speed, etc.

I More useful is an abstract characterization of the rate at
which an algorithm’s runtime grows

I We will characterize an algorithm as linear, quadratic, cubic,
etc.

Linear-time Algorithms (linear1.py)

I We have a linear-time algorithm when a linear increase in the
problem size leads to a linear increase in the execution time

I The below function is linear-time. What happens when we call
it with 1000000? 2000000? 3000000?

def linear(n):

total = 0

for i in range(n):

total += 1

return total

Linear-time Algorithms ... (linear2.py)

I This function is still linear-time

I If we increase the problem size by d (a linear increase), the
number of steps always increases by 2d

def linear(n):

total = 0

for i in range(n):

total += 1

total += 1

return total

ConcepTest

Is this algorithm linear-time?

def mystery(n):

total = 0

for i in range(n):

total += 1

for i in range(n):

total += 1

return total

I A. Yes

I B. No

Quadratic-time Algorithms (quadratic.py)

I This function is not linear-time

I Increasing the problem size by fixed increments causes
nonlinear increases in execution time

I e.g. increasing the input size from 10 to 20 causes less of an
execution-time increase than does increasing the input from
20 to 30

I For size n, this function performs a number of steps
proportional to n2

def quadratic(n):

total = 0

for i in range(n):

for j in range(n):

total += 1

return total

Cubic-time Algorithms (cubic.py)

I This function is even worse than quadratic-time

I For size n, this function performs a number of steps
proportional to n3

def cubic(n):

total = 0

for i in range(n):

for j in range(n):

for k in range(n):

total += 1

return total

ConcepTest

def mystery(n):

total = 0

for i in range(n):

for j in range(10000):

for k in range(50):

total += 1

return total

This algorithm is:

I A. Linear (n)

I B. Quadratic (n2)

I C. Cubic (n3)

I D. Not one of these three

ConcepTest

def mystery(n):

total = 0

for i in range(n):

for j in range(n):

for k in range(50):

total += 1

return total

This algorithm is:

I A. Linear (n)

I B. Quadratic (n2)

I C. Cubic (n3)

I D. Not one of these three

ConcepTest

def f(n):

sum = 0

while n > 0:

sum = sum + n ** 2

n = n // 2

return sum

This algorithm is:

I A. Better than linear

I B. Linear (n)

I C. Quadratic (n2)

I D. Worse than quadratic

ConcepTest

Your coworker tells you he’s found a way to change your algorithm
so it does HALF as much work. Knowing that the algorithm is
currently O(n2), you say:

I A. That’s great. This reduces our runtime to O(n) so it will
take less time to run.

I B. That’s great. Our runtime stays the same, but it will finish
in around half the time.

I C. That doesn’t do anything; our runtime stays the same, so
it takes the same amount of time to run.

I D. That doesn’t do anything; it does reduce our runtime to
O(n) but that doesn’t mean it runs faster.

ConcepTest

Your coworker tells you he’s found a way to clean up some code;
but in doing so, the algorithm will now do TWICE as much work.
Knowing that the algorithm is currently O(n2), you say:

I A. That’s bad. This increases our runtime to O(n4) so it will
take longer to run.

I B. That’s bad. Our runtime stays the same, but it will finish
in around twice the time.

I C. That’s great! Our runtime stays the same, so it takes the
same amount of time to run and the code is cleaner.

I D. That’s great!. This increases our runtime to O(n4) but
that doesn’t mean it runs slower and the code is now cleaner.

ConcepTest

(I didn’t get to this in lecture, but it’s good practice.)

def f(s):

num = 0

for c1 in s:

for c2 in s:

if c1 == c2:

num = num + 1

return num

The problem size is the length of s. This algorithm is:

I A. Better than linear

I B. Linear (n)

I C. Quadratic (n2)

I D. Worse than quadratic

