
Think Python

How to Think Like a Computer Scientist

Version 1.1.24+Kart [Python 3.2]





Think Python

How to Think Like a Computer Scientist

Version 1.1.24+Kart [Python 3.2]

Allen Downey

Green Tea Press
Needham, Massachusetts



Copyright © 2008 Allen Downey.

Printing history:

April 2002: First edition of How to Think Like a Computer Scientist.

August 2007: Major revision, changed title to How to Think Like a (Python) Programmer.

June 2008: Major revision, changed title to Think Python: How to Think Like a Computer Scientist.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Doc-
umentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and with no Back-Cover Texts.

The GNU Free Documentation License is available from www.gnu.org or by writing to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

The original form of this book is LATEX source code. Compiling this LATEX source has the effect of generating
a device-independent representation of a textbook, which can be converted to other formats and printed.

The LATEX source for this book is available from http://www.thinkpython.com



Chapter 1

The Boolean Type

1.1 Modulus operator
The modulus operator works on integers and yields the remainder when the first operand is divided
by the second. In Python, the modulus operator is a percent sign (%). The syntax is the same as for
other operators:

>>> quotient = 7 / 3
>>> print(quotient)
2.3333333333333335
>>> remainder = 7 % 3
>>> print(remainder)
1
>>> quotient = 7 // 3
print(quotient)
2

So 7 divided by 3 is 2 (using integer division), with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check whether one
number is divisible by another—if x % y is zero, then x is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example, x % 10 yields the
right-most digit of x (in base 10). Similarly x % 100 yields the last two digits.

1.2 Boolean expressions
A boolean expression is an expression that is either true or false. The following examples use
the operator ==, which compares two operands and produces True if they are equal and False
otherwise:

>>> 5 == 5
True
>>> 5 == 6
False



2 Chapter 1. The Boolean Type

True and False are special values that belong to the type bool; they are not strings:

>>> type(True)
<class 'bool'>
>>> type(False)
<class 'bool'>

The == operator is one of the relational operators; the others are:

x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are different from the
mathematical symbols. A common error is to use a single equal sign (=) instead of a double equal
sign (==). Remember that = is an assignment operator and == is a relational operator. There is no
such thing as =< or =>.

1.3 Logical operators
There are three logical operators: and, or, and not. The semantics (meaning) of these operators
is similar to their meaning in English. For example, x > 0 and x < 10 is true only if x is greater
than 0 and less than 10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if the number is divisible
by 2 or 3.

Finally, the not operator negates a boolean expression, so not (x > y) is true if x > y is false,
that is, if x is less than or equal to y.

Here are some examples of using these operators:

>>> a = False
>>> b = True
>>> not a
True
>>> not b
False
>>> a and b
False
>>> a or b
True
>>>

The and, or, and not operators have different precedences. not has the highest precedence, fol-
lowed by and and then or. This is similar to the arithmetic operators, where * has higher precedence
than +.

Strictly speaking, the operands of the logical operators should be boolean expressions, but Python is
not very strict. Any nonzero number is interpreted as “true.”



1.3. Logical operators 3

>>> 17 and True
True

This flexibility can be useful, but there are some subtleties to it that might be confusing. You might
want to avoid it for now until we have had more experience with boolean operators.


