
CSC108H Lecture 15

Dan Zingaro

October 15, 2012



List Mutability

a = [1, 2, 3, 4, 5]

b = a # Shared reference!

Two variables, but only one list:

     

1 2 3 4 5

a b

b[1] = 999 # check a!

     

1 999 3 4 5

a b



Slice Copies
To avoid the sharing behavior, a second list must be created. Slice
syntax creates a new list:

a = [1, 2, 3, 4, 5]

b = a[:] # two lists now!

     

1 2 3 4 5

     

a b

b[1] = 999 # a is not modified

     

12 3 4 5

     

999

a b



ConcepTest

a = [[1, 2, 3], [4, 5]]

b = a[:]

   

1 2 3

  

4 5

    

a b

The picture indicates the state after the above code executes. If
we then do:
b.append(8)

what is the list referred to by a?
I A. [[1, 2, 3], [4, 5]] (unchanged)
I B. [[1, 2, 3], [4, 5], 8]
I C. [[1, 2, 3], [4, 5, 8]]
I D. [[1, 2, 3], [4, 5], [8]]



Concatenation and Repetition

I The + operator is overloaded (again) to operate on two lists

I It returns a new list resulting from concatenating the
right-hand list to the end of the left-hand list

I It is similar to the extend method, but extend does not
return a new list!

I The * operator takes a list L and an integer n, and creates a
new list by concatenating n copies of L (like using + n-1

times)



Concatenation and Repetition...
Compare:

lst1 = [1, 2, 3]

lst2 = lst1 + lst1

lst2[0] = 99 # lst1 not modified

   

1 2 3

      

lst1 lst2

lst1 = [1, 2, 3]

lst2 = [lst1] + [lst1]

lst2[0][1] = 99 # lst1 modified!

   

1 2 3

  lst1

lst2



Using range

I The range function generates sequences of integers

I If we call range(n), integers from 0 to n - 1 are generated

I If we call range(m, n), integers from m to n - 1 are
generated

I If we call range(m, n, s), integers from m to n - 1, in
increments of s, are generated

I Use list(range(...)) to convert the range object to a list
for viewing



ConcepTest

What is the list produced by this code?

list(range(2, 7, 3))

I A. [2, 5, 8]

I B. [2, 5]

I C. [2, 5, 7]

I D. [2, 3, 4, 5, 6, 7]



ConcepTest

What is the list produced by this code?

list(range(4, 9, 4))

I A. [4, 8]

I B. [4, 8, 12]

I C. [4, 8, 9]

I D. [4, 5, 6, 7, 8, 9]



Example: Uppercase List and For

Use a for-loop to write both of these:
(1) Given a list of strings, write a function that returns a list that
contains all of these strings in uppercase. Do not modify the
original list.
(2) Given a list of strings, write a function that modifies the list so
that all strings are in uppercase. Do not return the list. This does
not work:

def uc_list (lst):

’’’(list of str) -> list of str

Change lst so that all of its strings are in uppercase.

’’’

for s in lst:

s = s.upper()



ConcepTest

What is printed by this code?

lst = [3, 6, 9]

sum = 0

counter = 0

while counter < len(lst):

sum += counter

counter += 2

print(sum)

I A. 18

I B. 6

I C. 2

I D. 9

I E. None of the above


