
CSC108H Lecture 33

Dan Zingaro

November 28, 2012



Selection Sort: the Code (selection sort.py)

def find_min(L, i):

’’’(list, int) -> int

Return the index of the smallest item in L[i:].

’’’

smallest_index = i

for j in range(i + 1, len(L)):

if L[j] < L[smallest_index]:

smallest_index = j

return smallest_index

def selection_sort(L):

’’’(list) -> NoneType

Sort the elements of L in non-descending order.

’’’

for i in range(len(L) - 1):

smallest_index = find_min(L, i)

L[smallest_index], L[i] = L[i], L[smallest_index]



ConcepTest

Which of the following is true of insertion sort?

I A. Once a value is placed in the sorted part, it will never move
again

I B. All values in the sorted part are always less than or equal
to all values in the unsorted part

I C. Both of the above are true

I D. None of the above is true



ConcepTest

[10, 20, 30, 40, 16, 94, 8, 22]

The list above reflects the state of the list after 3 passes of
insertion sort. What will be the list after the next (fourth) pass?

I A. [8, 20, 30, 40, 16, 94, 10, 22]

I B. [10, 16, 20, 30, 40, 94, 8, 22]

I C. [10, 16, 30, 40, 20, 94, 8, 22]

I D. [8, 10, 20, 30, 40, 16, 94, 22]

I E. [10, 20, 30, 40, 8, 94, 16, 22]



ConcepTest

[5, 7, 14, 19, 16, 2, 32, 9]

The list above reflects the state of the list after 3 passes of
insertion sort. What will be the list after the next (fourth) pass?

I A. [5, 7, 14, 16, 19, 2, 32, 9]

I B. [5, 7, 14, 19, 2, 16, 32, 9]

I C. [5, 7, 16, 19, 14, 2, 32, 9]

I D. [2, 5, 7, 14, 19, 16, 32, 9]

I E. [2, 7, 14, 19, 16, 5, 32, 9]



Insertion Sort: Complication

When writing code for insertion sort, we run into a problem.
[10, 20, 30, 40, 16]

I We know that the 16 should go at index 1

I But we can’t just put 16 there, because it would overwrite the
20

I What we do is shift each sorted element to the right until the
place for 16 is found

[10, 20, 30, 40, x]

[10, 20, 30, x, 40]

[10, 20, x, 30, 40]

[10, x, 20, 30, 40]



Insertion Sort: the Code (insertion sort.py)

def insert(L, i):

’’’(list, int) -> NoneType

Move L[i] to where it belongs in L[:i].

’’’

v = L[i]

while i > 0 and L[i - 1] > v:

L[i] = L[i - 1]

i -= 1

L[i] = v

def insertion_sort(L):

’’’(list) -> NoneType

Sort the elements of L in non-descending order.

’’’

for i in range(1, len(L)):

insert(L, i)



Bubble Sort

I Bubble sort divides the list into an unsorted part (initially the
whole list) and a sorted part (initially empty)

I Unlike selection and insertion, our bubble sort has the sorted
part at the right (not the left)

I Then, while our sorted part is not the whole list
I Scan the unsorted part from left to right
I When an element is larger than the one to its right, swap them

I This scan-and-swap constitutes one pass of bubble sort

I This is a lot of work done on each pass!



Bubble Sort: Example

I List: 8 10 3 5 1
I The work done on the first pass

I - 8 10 - 3 5 1
I 8 - 10 3 - 5 1
I 8 3 - 10 5 - 1
I 8 3 5 - 10 1 -
I 8 3 5 1 10

I So, after one pass: 8 3 5 1 10



Bubble Sort: Example...

I List: 8 3 5 1 10
I The work done on the second pass

I - 8 3 - 5 1 10
I 3 - 8 5 - 1 10
I 3 5 - 8 1 - 10
I 3 5 1 8 10

I So, after two passes: 3 5 1 8 10



ConcepTest

Which of the following is true of bubble sort?

I A. Once a value is placed in the sorted part, it will never move
again

I B. There is never a value in the sorted part that is smaller
than some value in the unsorted part

I C. Both of the above are true

I D. None of the above is true



Bubble Sort: the Code (bubble sort.py)

def bubble_sort(L):

’’’(list) -> NoneType

Sort the elements of L in non-descending order.

’’’

for i in range(len(L) - 1):

for j in range(len(L) - i - 1):

if L[j] > L[j + 1]:

L[j], L[j + 1] = L[j + 1], L[j]


