
CSC108H Lecture 26

Dan Zingaro

November 12, 2012



ConcepTest

class Thing(object):

def __init__(self, a, b):

self.val = a * b

def __str__(self):

return ’[’ + str(self.val + 2) + ’]’

t = Thing(4, 5)

print(t)

What is the output of this code?

I A. 20

I B. [20]

I C. 22

I D. [22]

I E. A memory address



Relational Operators and Built-in Types

I There are six relational operators: == != < <= > >=

I Built-in Python objects support all of these operators. For
example, on lists

I L1 == L2 is true exactly when L1 and L2 are of the same
length and all pairwise objects are ==

I L1 < L2 is true exactly when the lists are not equal, and the
first pair of different objects has the element from L1 less than
the corresponding element of L2

I . . . and so on for the other four



Relational Operators and Classes

I The default implementations for the relational operators in
our own objects are often not useful

I ==: same as is
I !=: same as not is
I < <= > >=: error (uncomparable types!)

I We can create specially-named methods that Python will call
when our object is involved in a comparison

I Like __init__, we don’t call these methods directly

I e.g. when Python sees p1 < p2, it will do p1.__lt__(p2)



Object Equality and Inequality

I Let’s add __eq__ and __ne__ methods to our Point class

I Points are equal when they are both points, and when the two
x-coordinates are equal, and when the two y-coordinates are
equal

I Points are not equal when __eq__ returns False

I We should explicitly define both __eq__ and __ne__



ConcepTest

class Account(object):

def __init__(self, val):

’’’(int) -> Account

Create bank account with val gold.

’’’

self.gold = val

def __eq__(self, other):

’’’(Account) -> bool’’’

return self.gold == 0 and other.gold == 5

Which of the following would evaluate to True?
I A. Account(50) == Account(50)
I B. Account(80) == Account(90)
I C. Account(0) == Account(5)
I D. Account(0) == Account(0)
I E. More than one of the above



ConcepTest

class Account(object):

def __init__(self, val):

’’’(int) -> Account

Create bank account with val gold.

’’’

self.gold = val

def __eq__(self, other):

return self.gold == 0

Which of the following would return True?
I A. Account(50) == Account(50)

I B. Account(80) == Account(90)

I C. Account(0) == Account(5)

I D. Account(0) == Account(0)

I E. More than one of the above



Less than, Greater Than, and the Rest

I Let’s add a __lt__ method to our Account class that returns
True iff the Account has less gold than the other Account

I This lets us do account1 < account2 or
account1 > account2, but <= and >= do not work!

I We could go ahead and define __le__ and __ge__, but that
is a lot of duplication

I Instead, define only __lt__ (and __eq__ and __ne__) and
then add @total_ordering above the class

I The @total_ordering adds __le__, __gt__, and __ge__

for us, using the __lt__ and __eq__ that we define



ConcepTest

class Point(object):

’’’Two-dimensional points’’’

def __init__ (self, x, y):

’’’(int, int) -> Point

Create two-dimensional Point at (x, y)

’’’

self.x = x

self.y = y

def __lt__(self, other):

return isinstance(other, Point) and (self.x < other.x \

or (self.x == other.x and self.y < other.y))

Which of the following would evaluate to True?

I A. Point(2, 3) < Point(4, 5)

I B. Point(2, 3) < Point(4, 1)

I C. Point(2, 3) < Point(1, 5)

I D. A and B

I E. All of the above


