
CSC108H Lecture 27

Dan Zingaro

November 14, 2012



Inheritance

I Many times, a new class will have much in common with an
existing class

I Copying-and-pasting from the old class, and then making a
few changes, is a bad idea

I What if you then discover a bug in the original class?
I What if you find that there are many classes you’d like to

create from the original one?

I Inheritance allows a new class to specialize an existing class
by specifying only what is different between them

I The class that inherits is called a subclass, and the class that
is inherited from is its superclass



Is-a

I Inheritance models is-a relationships

I The subclass “is-a” subset of the superclass
I e.g.

I The superclass could be Ship, representing all ships
I The subclass could be InvisibleShip that “is-a” Ship but

cannot take damage



Has-a

I Be careful not to use inheritance to model has-a relationships

I For example, consider Segment (line segments) and Point

(points)

I Is a point a line segment? — No

I Is a line segment a point? — No

I Inheritance cannot be used here

I A line segment “has” two points, not “is” two points

I Has-a relationships are modeled with instance variables, not
inheritance



ConcepTest

In the following pairs of words, the first is the subclass and the
second is the superclass. Which of them is a correct example of
inheritance?

I A. dog, cat

I B. dog, animal

I C. animal, dog

I D. dog, tail

I E. None of the above



ConcepTest

In the following pairs of words, the first is the subclass and the
second is the superclass. Which of them is a correct example of
inheritance?

I A. school, building

I B. school, student

I C. student, school

I D. school, computer

I E. None of the above



Inheriting from a Class

I So far all classes have started with class Name(object):

I To inherit from another class, use that class’ name in the
parentheses instead of object

class InvisibleShip(Ship):

...

When calling a method on an InvisibleShip:

I If the method exists in InvisibleShip, it is called

I Otherwise, the one in Ship is called



ConcepTest

class A(object):

def __init__(self, x):

self.x = x

def __str__(self):

return str(self.x)

class B(A):

def __init__(self, x):

self.x = x * 2

b = B(5)

print(b)

What is the output of this code?
I A. 5
I B. 10
I C. 510
I D. 105
I E. Error



Unit-Testing

I A docstring is not the place for a full test suite

I Instead, we create a separate file that contains all of our test
cases, and run them with unittest

I We subclass unittest.TestCase to make a class of test
cases

I Each method in this class contains one test case
I Inheriting from TestCase gives us access to methods used for

testing
I assertEqual, assertTrue, assertFalse



Testing Dictionary Inversion

I Remember back to our dictionary-inversion function

I It returns a dictionary where values are lists

I The order of elements in these lists does not matter, but
different list orderings make == return False

I In our tests for this function, we can’t just compare the
returned dictionary with the expected dictionary

I Instead, check that the keys are the same, and that values are
the same irrespective of order

I Also, check that the function does not modify the dict
parameter



Testing Functions that Return None

def merge_dict(d1, d2):

’’’ (dict of ({object: int}, dict of {object: int})) -> NoneType

Add key/value pairs from d2 into d1. If a key from d2 already

appears in d1, the new value in d1 is the sum of the values. If a

key appears only in d1 or d2, then the new value in d1 is the

original value from the dictionary that contained this key.

d2 is unchanged.

I Define dicts d1 and d2

I Call merge_dict(d1, d2)

I Assert three things: merge_dict returned None, d1 is as
expected, d2 is unchanged


