
CSC108H Lecture 11

Dan Zingaro

October 3, 2012



Strings and Indices

I Since a string is a sequence, we can use Python index
notation to extract its characters

I Assume s is a string

I Then, s[i] for i ≥ 0 extracts character i from the left

I Be careful: the first character in a string has index 0, not 1!

I We can also use a negative index i to extract a character
beginning from the right

I e.g. If s = "abcde", then
I s[0] is a
I s[1] is b
I s[-1] is e
I s[-3] is c



Python Slice Syntax

I Python slice syntax allows us to extract a segment of
characters from a string

I s[i:j] extracts characters beginning at s[i] and ending at
but not including s[j]

I If we leave out the first index, Python defaults to using index
0 to begin the slice

I Similarly, if we leave out the second index, Python defaults to
using index len(s) to end the slice

I s[:] therefore gives us a copy of the entire string

I We can use negative indices in the slice syntax as well



ConcepTest

What is the output of the following code?

game = ’Lost Vikings’

print(game[5:-1])

I A. kings

I B. king

I C. Viking

I D. Vikings

I E. ikings



ConcepTest

What is the output of the following code?

game = ’Lost Vikings’

print(game[2:-6])

I A. st V

I B. ost V

I C. iking

I D. st Vi

I E. Viking



ConcepTest

What is the output of the following code?

game = ’Lost Vikings’

print(game[-6:11])

I A. ost Vikings

I B. ost Viking

I C. ikings

I D. iking

I E. Vikings



Methods

I Method: a function specific to one type of object

I Methods are called using object.method syntax

s = "Hi CSC108!"

s.lower()

lower(s) # wrong!



String Methods

I Use dir(str) to get a list of string methods

I Use help(str.x) for help on method name x

I S.find(substring): return the index of the first occurrence
of substring in S starting from the left, or −1 if substring
is not found

I S.replace(old, new): return s but with all occurrences of
old replaced by new

I S.count(substring): return the number of times
substring occurs in S

I S.startswith(substring): return True exactly when S

begins with substring

I S.endswith(substring): return True exactly when S ends
with substring



ConcepTest

What is the output of this code?

s = ’Mississauga’

t = len(s.replace(’ss’, ’a’))

print(t)

I A. 11

I B. ss

I C. 10

I D. Miaaiaaauga’

I E. None of the above



ConcepTest

>>> help(str.center)

Help on method_descriptor:

center(...)

S.center(width[, fillchar]) -> str

Return S centered in a string of length width. Padding is

done using the specified fill character (default is a space)

What is the string produced by the following:
’cave’.center(8, ’x’)

I A. ’xxcavexx’

I B. ’ cave ’

I C. ’xxxxcavexxxx’

I D. ’ cave ’



Strings are Immutable (immutable string.py)
I String objects are immutable: means “cannot change”
I Methods that “look like” they are changing a string are

actually creating a new string object
I Below, the string referenced by s is not modified; a new string

is created, but immediately lost (since it is not referred to by
a variable)

s = "test"

s.upper()

print(s)

"test"

"TEST"s



Shared References and Strings

a = ’hi’

b = a

"hi"

a b

a = ’bye’

"hi" "bye"

ab



Shared References and Strings...

a = ’hi’

b = a

"hi"

a b

a = a.upper()

"hi" "HI"

ab


