CSC108H Lecture 31

Dan Zingaro

November 23, 2012



Measuring Runtime of Algorithms

» We want to understand how the execution time for an
algorithm increases when the problem size increases

» One approach: measure the execution time on different-sized
problems

» We can do this with our Maximum Segment Sum algorithms

> We will see that Awful grows much more quickly than Bad
and that Bad grows more quickly than Cool



Measuring Runtime: the Problem

» Precise runtimes may not be useful as a way to describe
algorithm performance

» They depend on the specific machine on which the program is
being run

» So in addition to runtime, we'd have to include information
about OS, processor speed, etc.

» More useful is an abstract characterization of the rate at
which an algorithm’s runtime grows

» We will characterize an algorithm as linear, quadratic, cubic,
etc.



Linear-time Algorithms (linearl.py)

» We have a linear-time algorithm when a linear increase in the
problem size leads to a linear increase in the execution time

» The below function is linear-time. What happens when we call
it with 10000007 20000007 30000007

def linear(n):

total = 0
for i in range(n):
total += 1

return total



Linear-time Algorithms ... (linear2.py)

» This function is still linear-time

> If we increase the problem size by d (a linear increase), the
number of steps always increases by 2d

def linear(n):

total = 0

for i in range(n):
total += 1
total += 1

return total



ConcepTest

Is this algorithm linear-time?

def mystery(n):
total = 0
for i in range(n):
total += 1
for i in range(n):
total += 1
return total

> A. Yes
» B. No



Quadratic-time Algorithms (quadratic.py)

» This function is not linear-time

> Increasing the problem size by fixed increments causes
nonlinear increases in execution time

> e.g. increasing the input size from 10 to 20 causes less of an
execution-time increase than does increasing the input from
20 to 30

» For size n, this function performs a number of steps
proportional to n?

def quadratic(n):
total = 0
for i in range(n):
for j in range(n):
total += 1
return total



Cubic-time Algorithms (cubic.py)

» This function is even worse than quadratic-time

» For size n, this function performs a number of steps
proportional to n3

def cubic(n):
total = 0
for i in range(n):
for j in range(n):
for k in range(n):
total +=1
return total



ConcepTest

def mystery(n):
total = 0
for i in range(n):
for j in range(10000):
for k in range(50):
total += 1
return total

This algorithm is:
» A. Linear (n)
» B. Quadratic (n?)
» C. Cubic (n®)
» D. Not one of these three



ConcepTest

def mystery(n):
total = 0
for i in range(n):
for j in range(n):
for k in range(50):
total += 1
return total

This algorithm is:
» A. Linear (n)
» B. Quadratic (n?)
» C. Cubic (n®)
» D. Not one of these three



ConcepTest

def f(n):
sum =
while

sum

> 0:
sum + n *x* 2
/] 2

return sum

B O

n =

=

This algorithm is:
> A. Better than linear
» B. Linear (n)
» C. Quadratic (n?)
» D. Worse than quadratic



ConcepTest

Your coworker tells you he's found a way to change your algorithm
so it does HALF as much work. Knowing that the algorithm is
currently O(n?), you say:

» A. That's great. This reduces our runtime to O(n) so it will
take less time to run.

» B. That's great. Our runtime stays the same, but it will finish
in around half the time.

» C. That doesn't do anything; our runtime stays the same, so
it takes the same amount of time to run.

» D. That doesn't do anything; it does reduce our runtime to
O(n) but that doesn't mean it runs faster.



ConcepTest

Your coworker tells you he's found a way to clean up some code;
but in doing so, the algorithm will now do TWICE as much work.
Knowing that the algorithm is currently O(n?), you say:

» A. That's bad. This increases our runtime to O(n*) so it will
take longer to run.

» B. That's bad. Our runtime stays the same, but it will finish
in around twice the time.

» C. That's great! Our runtime stays the same, so it takes the
same amount of time to run and the code is cleaner.

» D. That's great!. This increases our runtime to O(n*) but
that doesn’t mean it runs slower and the code is now cleaner.



ConcepTest

(I didn’t get to this in lecture, but it's good practice.)

def f(s):
num = 0
for c1 in s:
for c2 in s:
if cl == c2:
num = num + 1
return num

The problem size is the length of s. This algorithm is:
> A. Better than linear
» B. Linear (n)
» C. Quadratic (n?)
» D. Worse than quadratic



