
CSC108: Mutability and Functions

Daniel Zingaro
University of Toronto

daniel.zingaro@utoronto.ca

November 2012

1 Changing or Returning

Here are two functions that seem to be similar, but have important differences. It’s impor-
tant that you understand the differences between these functions because these differ-
ences affect the code you will write to implement the functions.

Function A:

def insert_after(L, n1, n2):

’’’(list of int, int, int) -> NoneType

Insert n2 after each occurrence of n1 in L.

’’’

Function B:

def insert_after2(L, n1, n2):

’’’(list of int, int, int) -> list of int

Return a new list consisting of all elements from L,

plus a copy of n2 after each occurrence of n1.

>>> insert_after2([3, 4, 5], 3, 10)

[3, 10, 4, 5]

’’’

Both of these functions have something to do with inserting n2 after each occurrence
of n1.

The first difference you should note is in the type contracts. The parameters for both
functions are the same, but the types of the return values are different. insert_after

does not return anything (indicated by NoneType) and insert_after2 does return some-
thing (a list of int). So if insert_after tries to return something, or insert_after2
does not have a return statement, the function would be incorrect.

The fact that one function returns something but the other does not is also reflected
in the descriptions in the docstrings. Read the descriptions again for both functions. The
description for insert_after refers to inserting elements directly in L. The description for

1



insert_after2, on the other hand, does not talk about modifying L but instead says that
the function should return a new list. So insert_after is supposed to modify L directly
and not return anything; insert_after2 is supposed to leave L alone and create and
return a new list.

Here is some code for both functions.

def insert_after(L, n1, n2):

’’’(list of int, int, int) -> NoneType

Insert n2 after each occurrence of n1 in L.

’’’

i = 0

while i < len(L):

if L[i] == n1:

L.insert(i+1, n2)

i += 1

i += 1

def insert_after2(L, n1, n2):

’’’(list of int, int, int) -> list of int

Return a new list consisting of all elements from L,

plus a copy of n2 after each occurrence of n1.

>>> insert_after2([3, 4, 5], 3, 10)

[3, 10, 4, 5]

’’’

new_L = []

for element in L:

new_L.append(element)

if element == n1:

new_L.append(n2)

return new_L

Note how insert_after uses insert to directly modify L, whereas insert_after2

never modifies L.
Another difference in the docstrings of these functions is that insert_after does not

include an example, but insert_after2 does include an example. The reason is that
docstring examples give the return value for the function when it is called with the given
parameters. insert_after does not return anything, so it would be incorrect to say:

>>> insert_after([3, 4, 5], 3, 10)

[3, 10, 4, 5]

It is incorrect because [3, 10, 4, 5] is not the return value from insert_after.

2



2 Using the Functions

Let’s play around in the shell to see the difference between insert_after

and insert_after2.
First, insert_after (I have saved both functions in file mutable.py):

>>> from mutable import *

>>> lst = [1, 2, 3, 4, 5]

>>> insert_after(lst, 3, 10)

>>> lst

[1, 2, 3, 10, 4, 5]

>>> lst2 = insert_after(lst, 3, 10)

>>> lst2

>>> print(lst2)

None

>>> lst

[1, 2, 3, 10, 10, 4, 5]

Make sure you understand why lst2 is None. insert_after returns None since there
is no return statement. It is therefore incorrect to do:
lst = insert_after(lst, ...)

Now for insert_after2:

>>> lst = [1, 2, 3, 4, 5]

>>> insert_after2(lst, 3, 10)

[1, 2, 3, 10, 4, 5]

>>> lst

[1, 2, 3, 4, 5]

>>> insert_after2(lst, 3, 10)

[1, 2, 3, 10, 4, 5]

>>> lst

[1, 2, 3, 4, 5]

>>> lst2 = insert_after2(lst, 3, 10)

>>> lst2

[1, 2, 3, 10, 4, 5]

>>> lst

[1, 2, 3, 4, 5]

Here, if we don’t assign the return value of insert_after2 to a variable, that return
value is lost. This is because insert_after2 creates a new list rather than modifies the
existing list.

3



3 Exercise

Write the body for the following function. Note that the word object in the docstring just
means that v can be any object (i.e. of any type). So v could be an integer or a string or
a list or anything else. The type of v doesn’t change your code at all: you just set every
key’s value to v.

def make_all_values_equal(d, v):

’’’(dict, object) -> NoneType

Modify d so that each of its values equals v.

’’’

4


