CSC108H Lecture 30

Dan Zingaro

November 21, 2012

Algorithm Analysis

» Algorithm analysis is about determining the computing
resources required by an algorithm

» Since there's often more than one way to solve a problem,
evaluating the computing resources required by an algorithm
allows us to determine its efficiency compared to other
algorithms

» Computing resources typically refers to the execution
“time” an algorithm requires, but may also refer to the
amount of memory it uses

» We'll go through several approaches for solving the same
problem, and compare them

Maximum Segment Sum

> The problem we'd like to solve is the maximum segment
sum

> Input: Python list L of n integers
» Output: maximum sum of any segment of L

> A segment is a slice of the list (i.e. a contiguous portion of
the list)

» For example, the segments of the list [-4, 2, 6] are [],
[-4], [21, [6]1, [-4, 2], [2, 6], [-4, 2, 6]

> ... and the maximum segment sum of this list is 8 (from
[2, 6]

ConcepTest

[2, -5, 8, -6, 10]
What is the maximum segment sum in this list?

» A 8
» B.9
» C. 10
» D. 12
» E. 20

ConcepTest

[2, -5, 8, -15, 10]
What is the maximum segment sum in this list?

» A 3
» B. 8
» C. 10
» D. 12
» E. 15

Segment Observations

» The maximum segment sum of a list of all positive numbers is
the sum of all elements in the list

» When we have some negative numbers in the list, it gets
trickier. Which ones do we include?

» If all numbers are negative, the maximum sum is 0 (from the
empty segment)

» We can check every segment of a list by pairing each possible
starting point with each possible ending point

Approach A

» Qur first approach will compute the sum of each segment in
the list, and compare it to the maximum so far

> For example, here is how this would start operating on
[41 -3’ 99 -5]

max: O

sum of segment [4] = 4
max changes to: 4

sum of segment [4, -3] = 4-3 =1
max remains: 4

sum of segment [4, -3, 9] = 4-3+9 = 10
max changes to: 10

sum of segment [4, -3, 9, -5] = 4-3+9-5 = 5
max remains: 10

sum of segment [-3] = -3
max remains: 10

Approach (A)wful (segsl.py)

Note the triply nested for-loops.

def max_segment_sum(L) :
?23(1ist of int) -> int
Return maximum segment sum of L.
)))
max_so_far = 0
for lower in range(len(L)):
for upper in range(lower, len(L)):
sum = O
for i in range(lower, upper+1):
sum = sum + L[i]
max_so_far = max(max_so_far, sum)
return max_so_far

ConcepTest

(o, 1, 2, 3, 4]
How many times does Approach A compute the sum 1 +2 + 3 in
the above list?

» Al
» B. 2
» C. 3
» D. 4
E.5

v

ConcepTest

(o, 1, 2, 3, 4]
How many times does Approach A compute the sum 0+ 1+ 2 in
the above list?

» Al
» B. 2
» C. 3
» D. 4
E.5

v

Improving the Approach

» The above (awful) approach is well-named!

» To find the sum of segment [4, -3, 9], we computed

4—-349
» But then, to find the sum of [4, -3, 9, -5], we redo the
4 — 3+ 9 again!

> In general, when it sums the elements between bounds / and
u, it will repeat all of the work it did when previously finding
the sum between bounds / and v — 1

» Our second approach will compute the sum of a segment by
adding only the new rightmost element’s value to the sum of
the segment without that element

Approach B
» OQur second approach, operating on [4, -3, 9, -5]:

max: O
sum: O
sum of segment [4] = 0+4 = 4
max changes to: 4
sum changes to: 4
sum of segment [4, -3] = 4-3 =1
max remains: 4
sum changes to: 1
sum of segment [4, -3, 9] = 1+9 = 10
max changes to: 10
sum changes to: 10
sum of segment [4, -3, 9, -5] = 10-5 =5
max remains: 10
sum changes to: 5
sum changes to: O
sum of segment [-3] = 0-3 = -3

Approach (B)ad (segs2.py)

Note the doubly nested for-loops.

def max_segment_sum(L):
’77(list of int) -> int
Return maximum segment sum of L.
1))
max_so_far = 0
for lower in range(len(L)):
sum = O
for upper in range(lower, len(L)):
sum = sum + L[upper]
max_so_far = max(max_so_far, sum)
return max_so_far

Improving the Approach, Again

» Approach Bad still has some inefficiency

» Consider list [0, 1, 2, 3, 4, 5, 6, 7, 8]

» Bad will calculate all segment sums starting from 0 by adding
each element once (instead of over and over like in Awful)

» But, besides the 0, this is exactly what we do later when
calculating the segment sums starting from 1

» And besides 1, the rest of that work is repeated again when
we calculate the segment sums starting from 2

Just One Pass

> There is a third approach that examines each element just
once
> It makes a single left-to-right pass over the list
» The Awful and Bad approaches made multiple left-to-right
passes
» Assume m is the maximum sum over all segments in L[:1]

» Now, we want to extend this to the maximum sum over all
segments in L[:i+1]

» The key observation is that the only new segments we have
not considered in L[:i+1] are those that end with L[i]

> The maximum segment sum in L[:i+1] will then be the

maximum of m, and the maximum segment sum of those
segments ending at L[i]

Approach (C)ool (segs3.py)

Just one for-loop now!

def max_segment_sum(L):

?27(1ist of int) -> int

Return maximum segment sum of L.

AP AN

max_so_far = 0

max_ending_here = 0

for i in range(len(L)):
max_ending here = max(max_ending here + L[i], 0)
max_so_far = max(max_so_far, max_ending_here)

return max_so_far

Timing the Algorithms (in seconds)

List Length | Awful | Bad | Cool
200 0.46 0.03 | 0.0
300 1.47 0.04 | 0.0
400 3.49 0.08 | 0.0
500 6.76 0.13 | 0.0
600 1153 | 0.20 | 0.0
700 18.06 | 0.26 | 0.0
800 2724 1035 |00
900 38.11 | 0.43 | 0.0
100000 YAWN | yawn | 0.17

