
Think Python

How to Think Like a Computer Scientist

Version 1.1.24+Kart [Python 3.2]





Think Python

How to Think Like a Computer Scientist

Version 1.1.24+Kart [Python 3.2]

Allen Downey

Green Tea Press
Needham, Massachusetts



Copyright © 2008 Allen Downey.

Printing history:

April 2002: First edition of How to Think Like a Computer Scientist.

August 2007: Major revision, changed title to How to Think Like a (Python) Programmer.

June 2008: Major revision, changed title to Think Python: How to Think Like a Computer Scientist.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Doc-
umentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and with no Back-Cover Texts.

The GNU Free Documentation License is available from www.gnu.org or by writing to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

The original form of this book is LATEX source code. Compiling this LATEX source has the effect of generating
a device-independent representation of a textbook, which can be converted to other formats and printed.

The LATEX source for this book is available from http://www.thinkpython.com



Chapter 1

More Functions

1.1 Math functions
Python has a math module that provides most of the familiar mathematical functions. A module is
a file that contains a collection of related functions.

Before we can use the module, we have to import it:

>>> import math

This statement creates a module object named math. If you print the module object, you get some
information about it:

>>> print(math)
<module 'math' (built-in)>

The module object contains the functions and variables defined in the module. To access one of the
functions, you have to specify the name of the module and the name of the function, separated by a
dot (also known as a period). This format is called dot notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the signal-to-noise ratio. The math module also
provides a function called log that computes logarithms base e. (We’re not interested in the math
here; we’re just using math because it provides an easy way to call built-in Python functions. Focus
on syntax here, not log and radians and all of that.)

The second example finds the sine of radians. The name of the variable is a hint that sin and the
other trigonometric functions (cos, tan, etc.) take arguments in radians. To convert from degrees to
radians, divide by 360 and multiply by 2π:

>>> degrees = 45
>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)
0.7071067811865475



2 Chapter 1. More Functions

The expression math.pi gets the variable pi from the math module. The value of this variable is an
approximation of π, accurate to about 15 digits.

If you know your trigonometry, you can check the previous result by comparing it to the square root
of two divided by two:

>>> math.sqrt(2) / 2.0
0.7071067811865476

1.2 Composition
One of the most useful features of programming languages is their ability to take small building
blocks and compose them. For example, the argument of a function can be any kind of expression,
including arithmetic operators:

x = math.sin(degrees / 360.0 * 2 * math.pi)

And even function calls:

x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with one exception: the
left side of an assignment statement has to be a variable name. Any other expression on the left side
is a syntax error.

>>> minutes = hours * 60 # right
>>> hours * 60 = minutes # wrong!
SyntaxError: can't assign to operator

1.3 Flow of execution
The flow of execution refers to the order in which Python code is executed.

Execution always begins at the first statement of the program. Statements are executed one at a time,
in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that statements
inside the function are not executed until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next statement, the
flow jumps to the body of the function, executes all the statements there, and then comes back to
pick up where it left off.

That sounds simple enough, until you remember that one function can call another. While in the
middle of one function, the program might have to execute the statements in another function. But
while executing that new function, the program might have to execute yet another function!

Fortunately, Python is good at keeping track of where it is, so each time a function completes, the
program picks up where it left off in the function that called it. When it gets to the end of the
program, it terminates.

What’s the moral of this sordid tale? When you read a program, you don’t always want to read from
top to bottom. Sometimes it makes more sense if you follow the flow of execution.

Let’s consider an example. Here are three functions being defined at the Python shell:



1.4. Variable Lookup 3

>>> def first(x):
... return x + 5
...
>>> def second(x):
... x = x + first(9)
... return x
...
>>> def third(x):
... print(second(2))
... print('Hi!')
... print(first(4))
... return x
...
>>>

To begin, type the expression first(8). The output is 13. To arrive at this output, Python calls
first with the x parameter of first set to 8. first then returns its parameter plus 5, which is
printed by the Python shell.

Next, let’s try second(3). This calls second with the x parameter of second having value 3. Inside
second, the parameter x is assigned the value x + first(9). To do this requires knowing the result
of first(9). So here, the execution of second is suspended, and first is executed with parameter
9. first returns the value 14. At this point, execution returns back to second, and x + first(9)
has value 3 + 14 = 17. Note that the x in second is still 3 when first returns. Each x, even
though it has the same name as the other xs, is independent and local to each function.

Finally, let’s try third(3). To understand the output for this one, we really have to be careful
“remembering” where we are in each function execution. First of all, we have print(second(2)).
To do this, we temporarily suspend execution of third in order to run second. So, second gets
called with its x parameter set to 2. For second to execute, it has to further call first, as described
above. second(2) evaluates to 16, at which point execution returns back to third and 16 can be
printed. third then continues with its next line (remember that functions “remember” their place
after making a function call), whose result is to output Hi!. Finally, the result of first(4) is
printed, which again requires third to be suspended to allow first to run. Once first returns 9,
we again continue where we left off in third. The only thing remaining is the return statement,
which returns 3 to the Python shell. x still has the value 3 here: nowhere in third was the value of
x changed!

At this point, I’d recommend playing with this example in the visualizer. Step through the code to
follow the program flow. Notice that the function definitions are executed in one step, but produce
no output: what they do is “store” the function definition for later calling. Only when you call the
function does the program jump up to the function code and execute the function body.

1.4 Variable Lookup
To determine whether a variable access is legal, Python uses a rule that we will refer to as the LGB
rule. This means that there are three possibilities for where Python can find a variable. First, it
checks to see whether you are referring to a local variable (that’s the L). If not, it checks to see if
there is a global variable of that name (that’s the G). If not, and finally, Python checks for a built-in
variable having the name you specified. If it can’t find it there, then it finally gives up and gives you
an error saying that the variable is not defined.



4 Chapter 1. More Functions

Local variables are those that are defined inside of a function or listed as parameters to a function.
To create a global variable, you define it outside of any function definition.

A common error is to try to access a variable that is defined but not covered by this rule. Here is an
example:

>>> def first():
... total = 5
... second()
...
>>> def second():
... print(total)
...
>>> first()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in first
File "<stdin>", line 2, in second
NameError: global name 'total' is not defined
>>>

When first is called, a local variable named total is assigned. Then, first calls second, who
in turn tries to access total. Can second make this access? No! total is not local to second (no
L), and total is not a global variable (no G), and total is not built-in to Python (no B). (total is
a local variable of first.) So, accessing total from second is an error.

Also, note the traceback provided by Python when the variable access failed. From bottom to top, it
indicates that second was active, and that second was called from first, and that first was called
by <module> (which just means that you called first, not some other function). These errors are
very useful for helping you determine where an error occurred and how that condition arose.


