
Think Python

How to Think Like a Computer Scientist

Version 1.1.24+Kart [Python 3.2]





Think Python

How to Think Like a Computer Scientist

Version 1.1.24+Kart [Python 3.2]

Allen Downey

Green Tea Press
Needham, Massachusetts



Copyright © 2008 Allen Downey.

Printing history:

April 2002: First edition of How to Think Like a Computer Scientist.

August 2007: Major revision, changed title to How to Think Like a (Python) Programmer.

June 2008: Major revision, changed title to Think Python: How to Think Like a Computer Scientist.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under the terms of the GNU Free Doc-
umentation License, Version 1.1 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and with no Back-Cover Texts.

The GNU Free Documentation License is available from www.gnu.org or by writing to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

The original form of this book is LATEX source code. Compiling this LATEX source has the effect of generating
a device-independent representation of a textbook, which can be converted to other formats and printed.

The LATEX source for this book is available from http://www.thinkpython.com



Chapter 1

Functions

1.1 Function calls
In the context of programming, a function is a named sequence of statements that performs a com-
putation. When you define a function, you specify the name and the sequence of statements. Later,
you can “call” the function by name. Here is one example of a function call:

>>> type(32)
<class 'int'>

The name of the function is type. The expression in parentheses is called the argument of the
function. The result, for this function, is the type of the argument.

It is common to say that a function “takes” an argument and “returns” a result. The result is called
the return value.

1.2 Type conversion functions
Python provides built-in functions that convert values from one type to another. The int function
takes any value and converts it to an integer, if it can, or complains otherwise:

>>> int('32')
32
>>> int('Hello')
ValueError: invalid literal for int() with base 10: 'Hello'

int can convert floating-point values to integers, but it doesn’t round off; it chops off the fraction
part:

>>> int(3.99999)
3
>>> int(-2.3)
-2

float converts integers and strings to floating-point numbers:



2 Chapter 1. Functions

>>> float(32)
32.0
>>> float('3.14159')
3.14159

Finally, str converts its argument to a string:

>>> str(32)
'32'
>>> str(3.14159)
'3.14159'

1.3 Adding new functions
So far, we have only been using the functions that come with Python, but it is also possible to add
new functions. A function definition specifies the name of a new function and the sequence of
statements that execute when the function is called.

Here is an example:

def print_lyrics():
print("I'm a lumberjack, and I'm okay.")
print("I sleep all night and I work all day.")

def is a keyword that indicates that this is a function definition. The name of the function is
print_lyrics. The rules for function names are the same as for variable names: letters, num-
bers and some punctuation marks are legal, but the first character can’t be a number. You can’t use a
keyword as the name of a function, and you should avoid having a variable and a function with the
same name.

The empty parentheses after the name indicate that this function doesn’t take any arguments.

The first line of the function definition is called the header; the rest is called the body. The header
has to end with a colon and the body has to be indented. The body can contain any number of
statements.

The strings in the print statements are enclosed in double quotes. Single quotes and double quotes do
the same thing; most people use single quotes except in cases like this where a single quote (which
is also an apostrophe) appears in the string.

To end the function, you have to enter an empty line (this is not necessary when the function is
written in a program rather than at the shell).

Defining a function creates a variable with the same name.

>>> print print_lyrics
<function print_lyrics at 0xb7e99e9c>
>>> print(type(print_lyrics))
<class 'function'>

The value of print_lyrics is a function object, which has type class 'function'.

The syntax for calling the new function is the same as for built-in functions:



1.4. Definitions and uses 3

>>> print_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

Once you have defined a function, you can use it inside another function. For example, to repeat the
previous refrain, we could write a function called repeat_lyrics:

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then call repeat_lyrics:

>>> repeat_lyrics()
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.
I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

But that’s not really how the song goes.

1.4 Definitions and uses
Pulling together the code fragments from the previous section, the whole program looks like this:

def print_lyrics():
print "I'm a lumberjack, and I'm okay."
print "I sleep all night and I work all day."

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

This program contains two function definitions: print_lyrics and repeat_lyrics. Function
definitions get executed just like other statements, but the effect is to create function objects. The
statements inside the function do not get executed until the function is called, and the function
definition generates no output.

As you might expect, you have to create a function before you can execute it. In other words, the
function definition has to be executed before the first time it is called.

1.5 Parameters and arguments
Some of the built-in functions we have seen require one or more arguments. For example, when you
call input you pass a string as an argument. Other functions, such as the built-in pow function, take
multiple arguments. pow takes two arguments: the base and the exponent:

>>> pow (2, 5)
32



4 Chapter 1. Functions

Inside the function, the arguments are assigned to variables called parameters. Here is an example
of a user-defined function that takes an argument:

def print_twice(bruce):
print(bruce)
print(bruce)

This function assigns the argument to a parameter named bruce. When the function is called, it
prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice('Spam')
Spam
Spam
>>> print_twice(17)
17
17
>>> print_twice(3.14)
3.14
3.14

We can use any kind of expression as an argument for print_twice:

>>> print_twice('Spam ' + 'Spam')
Spam Spam
Spam Spam

You can also use a variable as an argument:

>>> michael = 'Eric, the half a bee.'
>>> print_twice(michael)
Eric, the half a bee.
Eric, the half a bee.

The name of the variable we pass as an argument (michael) has nothing to do with the name of the
parameter (bruce). It doesn’t matter what the value was called back home (in the caller); here in
print_twice, we call everybody bruce.

1.6 Variables and parameters are local
When you create a variable inside a function, it is local, which means that it only exists inside the
function. For example:

def cat_twice(part1, part2):
cat = part1 + part2
print_twice(cat)

This function takes two arguments, concatenates them, and prints the result twice. Here is an exam-
ple that uses it:

>>> line1 = 'Bing tiddle '
>>> line2 = 'tiddle bang.'



1.7. Fruitful functions and void functions 5

>>> cat_twice(line1, line2)
Bing tiddle tiddle bang.
Bing tiddle tiddle bang.

When cat_twice terminates, the variable cat is destroyed. If we try to print it, we get an exception:

>>> print(cat)
NameError: name 'cat' is not defined

Parameters are also local. For example, outside print_twice, there is no such thing as bruce.

1.7 Fruitful functions and void functions
Some functions yield results; for lack of a better name, I call them fruitful functions. Other func-
tions, like print_twice, perform an action but don’t return a value. They are called void functions.

When you call a fruitful function, you almost always want to do something with the result; for
example, you might assign it to a variable or use it as part of an expression. Here is an example
using the built-in abs (absolute value) function:

x = abs(-4)

When you call a function in interactive mode from the shell, Python displays the result:

>>> abs(-5)
5

But in a program, if you call a fruitful function all by itself, the return value is lost forever!

abs(5)

This program computes the absolute value of 5, but since it doesn’t store or display the result, it is
not very useful.

Void functions might display something on the screen or have some other effect, but they don’t have
a return value. If you try to assign the result to a variable, you get a special value called None.

>>> result = print_twice('Bing')
Bing
Bing
>>> print(result)
None

The value None is not the same as the string 'None'. It is a special value that has its own type:

>>> print(type(None))
<class 'NoneType'>

The functions we have written so far are all void. Here is a first example of a function that returns
something: it computes the area of a rectangle given the length and width.

def area(length, width):
rect_area = length * width
return rect_area



6 Chapter 1. Functions

When written as just return with no expression, return causes the function to terminate and re-
turn to the caller. In a fruitful function the return statement includes an expression. This state-
ment means: “Return immediately from this function and use the following expression as the return
value.” The expression can be arbitrarily complicated, so we could have written this function more
concisely:

def area(length, width):
return length * width

On the other hand, temporary variables like temp often make debugging easier.


