
CS 150 Spring 2014
PRACTICE Final

Name:

This test is closed notes, closed book. No aids are permitted. The test has 9 pages including this
page. There are 8 questions. You have 2 hours. You may use the back of any page if you need
more space; indicate on the front of that page if you do so.

Good luck!

Question 1 /15 pts

Question 2 /10 pts

Question 3 /5 pts

Question 4 /15 pts

Question 5 /15 pts

Question 6 /10 pts

Question 7 /15 pts

Question 8 /15 pts

Total /100 pts



CS 150 PRACTICE Final 2

1. (15 pts) Recursion.

(a) What is the output of the following chunk of code?

def R(s) :

if len(s) == 0 :

return ""

else :

return s[0] + R(s[1:]) + s[0]

print(R(‘‘cat"))

cattac

(b) Write a recursive function lessThan(L,e) that takes a list L and an element e, and
returns True if all of the elements of L are less than e, and False otherwise. You cannot
make any assumptions about what type of objects e and the elements of L are, but you can
assume that <,>,= etc work. Do not use loops.

def lessThan(L,e):

if len(L) == 0:

return True

if L[0] > e:

return False

return lessThan(L[1:],e)



CS 150 PRACTICE Final 3

2. (10 pts) Odds and Ends.
(a) What is wrong with the following code?

def __init__(a,b,c):

a = self.a

b = self.b

c = self.c

The assignment statements are backwards. ”self.a”, etc, do not yet exist, and we want to
set them to be equal to the values of the parameters a,b, and c - instead we are overwriting
those parameters with the (nonexistent) values of self.a, self.b and self.c.

(b) Suppose A, B and C are boolean variables. Write a boolean expression that evaluates
to true if and only if one or more of these variables are False.

(not A) or (not B) or (not C)



CS 150 PRACTICE Final 4

3. (5 pts) Runtime Evaluation.

(a) Consider the following stupid function that takes in a list of integers:

def s(L) :

x = 0

for i in range(len(L)) :

for j in range(50) :

L[i] = L[i] + j

for i in range(len(L)) :

print(L[i])

What is the runtime of this function in terms of n, where n is the length of the list L. Express
your answer using Big O notation.

O(n)



CS 150 PRACTICE Final 5

4. (15 pts) Searching and Sorting.

(a) Which has the best Big O runtime: Selection sort, Insertion sort, or Bubble sort?

They are all the same

(b) Will selection sort or insertion sort perform better on a list that is already partially
sorted?

Insertion sort.

(c) Write pseudocode to do a binary search over a sorted list.

def binSearch(L,e):

start = 0

end = len(L)

while (True):

mid = start + (end-start)//2

mid_element = L[mid]

if mid_element == e:

return True

if start == end:

return False

if mid_element < e:

end = mid

else:

start = mid



CS 150 PRACTICE Final 6

5. (15 pts) Multiple Processes (a) Assume you have a very large number, n, and a list, P,
that consists of the primes from 2 to the first prime larger than the square root of n. Use a
process pool with 4 processes to determine if n is prime.

def isNotMult(T):

n = T[0]

P = T[1]

for e in P:

if n%e == 0:

return False

return True

l=len(P)

argslist = [(n,P[:l//4]),(n,P[l://4:l//2]),(n,P[l//2:3*l//4]),(n,P[3*l//4:])]

pool = Pool(processes=4)

results = pool.map(isNotMult,argslist)

isPrime = True

for e in results:

if not e:

isPrime = False

(b) Write code where 10 processes each add 1 to r.value 10 times, ending with r.value equal
to 100. Make sure you use the lock to ensure you end up with the correct result.

r = RawValue("i",0)

l = Lock()

def add(r,l):

for i in range(10):

l.acquire()

r.value = r.value + 1

l.release()

for i in range(10):

p = Process(target=add, args=(r,l))

p.start()



CS 150 PRACTICE Final 7

6. (10 pts) Objects and Inheritance. Create a subclass of S, R, which says “Wheee!” instead
of “Hi”, and eats pizza instead of kale. Its sleep should remain the same.

class S:

def talk(self):

return "Hi!"

def nom(self):

return "Delicious kale!"

def sleep(self):

return "zzzzzz"

class R(S):

def talk(self):

return "Wheeeee!"

def nom(self):

return "Delicious pizza!"



CS 150 PRACTICE Final 8

7. (15 pts) Patterns. Write a function tree(n), which takes in a number and draws a lovely
tree like the ones pictured below.

tree(3) tree(5)

* *

*** ***

***** *****

******* *******

* *********

* ***********

* *

*

*

*

*

def tree(n):

for i in range(n+1):

print(" "*n-i,"*"*i,"*","*"*i,sep="")

for i in range(n):

print(" "*n,"*",sep="")



CS 150 PRACTICE Final 9

8. (15 pts) 2D Lists. Write a Python function called diagFlip(L) that takes in a 2-dimensional
n× n list L and flips it around the diagonal. For example, if the list L was

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

then n = 4 and the function should update the list to

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

If you’re having trouble getting started, try to figure out where the value at a general loca-
tion (i, j) should be placed in terms of i, j and n. Sometimes its easier to think about bigger
examples. Check whether your answer is consistent with the above example. Hint: it may
be useful to create a new copy of L to avoid accidentally overwriting data.

def diagFlip(L):

#copy L

for i in range(n):

newL = newL + [[0]*n]

for i in range(n):

for j in range(n):

newL[i][j] = L[i][j]

#flip L

for i in range(n):

for j in range(n):

L[i][j] = newL[j][i]


