
CS 150: Inheritance

Cynthia Taylor

Oberlin College

March 21st 2014

Inheritance
• Many times, a new class will have much in

common with an existing class

• Inheritance allows a new class to specialize an
existing class by specifying only what is
different between them

• The class that inherits is called a subclass, and
the class that is inherited from is its superclass

is-a

• inheritance models is-a relationships

• The subclass “is-a” subset of the superclass

– The superclass could be Ship, representing all
ships

– The subclass could be CloakedShip that “is-a”
Ship but cannot be detected with sensors

has-a
• Be careful not to use inheritance to model has-a

relationships

• For example, consider a Ship and a
PhotonTorpedo

– A PhotonTorpedo is not a Ship

– A Ship is not a PhotonTorpedo

– Inheritance cannot be used

– A Ship has a PhotonTorpedo, not is a PhotonTorpedo

• Has-a relationships are modeled with instance
variables, not inheritance

In the following pairs of words, the first is the
subclass and the second is the superclass.
Which of them is a correct example of
inheritance?

A. dog, cat

B. dog, animal

C. animal, dog

D. dog, tail

E. None of the above

Inheriting from a Class

• To inherit from another class, use that class’
name in parentheses in the class declaration

class CloakedShip(Ship):

...

• When calling a method on a CloakedShip:

– If the method exists in CloakedShip, it is called

– Otherwise, the one in Ship is called

class A:

def __init__(self, x):

self.x = x

def __str__(self):

return str(self.x)

class B(A):

def __init__(self, x):

self.x = x * 2

b = B(5)

print(b)

What is the output of
this code?
A. 5
B. 10
C. 510
D. This will cause an
error
E. I don’t know

Person Class

p = Person(“George”, “Williker”)

s = Student(“Buddy”,”Bob”)

s.study()

p.study() What is the output of this code?

A. "Need to study...
but...Internet!” will print twice
B. "Need to study... but...Internet!”
will print once
C. Nothing will print
D. This will cause an error
E. I don’t know

Type Checking

• Sometimes we need to check the type of an
object before calling a method

if type(p) == Student:

p.study()

else:

p.work()

What if we want a variable that is
shared by all members of a class?

• Say we want to count the total number of
students

• self.count will be unique for each object,
not shared by the whole class

• We need a global variable

• Student.count will be shared by all objects
of type student

• Can access either by using classname.variable
name, or objectname.variablename

Class Student(Person):

count = 0

def __init__(self, first, last):

....

Student.count = Student.count + 1

class A:

count = 0

def __init__(self, x):

self.x = x+1

A.count= A.count+1

A1 = A(2)

A2 = A(4)

A3 = A(5)

print(A1.x, A1.count,

A.count)

What is the output of
this code?
A. 3, 1, 1
B. 3, 1, 3
C. 3, 3, 3
D. 2, 1, 1
E. I don’t know

Next Class

• Binary

• Lab 7 – Due Tuesday AFTER BREAK at 10 pm

• Prelab 8 – Due in class on Wednesday

