
CS 150: Methods

Cynthia Taylor

Oberlin College

March 19th 2014

Clicker Groups Change

• I will reshuffle groups over spring break

• If you want to stay with your group, fill out
form on blackboard

• If you do nothing, your group will change

Methods

• Methods are actions that can be performed by
an object

• We have used many str, list and picture
methods and now we’re writing our own

Methods versus Functions

• Different calling syntax:
p.move_right(10) instead of
move_right(p, 10)

• First parameter is always self, but we don’t
include self when calling the method
– When we call p.move_right(10), self will refer

to p

• If a method takes two parameters, it is defined
to have three (self and the two “real ones”)

class Thing(object):

def do_it(self, a, b, c):

...

t is an object of class Thing and d, e, and f are
defined. What is the proper way to call do_it?

A.do_it(d, e, f)

B.do_it(self, d, e, f)

C.do_it(t, d, e, f)

D.t.do_it(d, e, f)

E.t.do_it(t, d, e, f)

Objects as Strings

• By default, print on some object gives you a
memory address, not a useful representation
of the object

• But all of the built-in objects print nicely.
How?

• The trick is to add a __str__ method that
returns a string representation of the object

class Thing(object):

def __init__(self, a, b):

self.val = a * b

def __str__(self):

return ’[’ + str(self.val + 2) + ’]’

t = Thing(4, 5)

print(t)

What is the output of this code?

A.20 C. 22

B. [20] D. [22]

E. A memory address

Relational Operators

• There are six relational operators: == != < <= >
>=

• Built-in Python objects support all of these
operators. For example, on lists
– L1 == L2 is true exactly when L1 and L2 are of the

same length and all pairwise objects are ==

– L1 < L2 is true exactly when the lists are not
equal, and the first pair of different objects has the
element from L1 less than the corresponding element
of L2

– ... and so on for the other four

class Account(object):

def __init__(self, val):

self.gold = val

def __eq__(self, other):

return self.gold==0 and other.gold==5

Which of the following would evaluate to True?

A. Account(50) == Account(50)

B. Account(80) == Account(90)

C. Account(0) == Account(5)

D. Account(0) == Account(0)

E. More than one of the above

Example

• Let’s add __eq__ and __ne__ methods to our
Point class

• Points are equal when they are both points,
and when the two x-coordinates are equal,
and when the two y-coordinates are equal

• Points are not equal when __eq__ returns
False

• We should explicitly define both __eq__ and
__ne__

Write code for __eq__

Which code for __ne__ is correct?

def __ne__(self, p):

return not self == p

def __ne__(self, p):

return self.x == p.x and self.y == p.y

def __ne__(self, p):

if self.x =! p.x or self.y !=

p.y:

return True

return False

A

B

C

D. More than one of the above E. I don’t know

We want the point closer to the origin to be the
lesser point. Which code is correct?

def __lt__(self, p):

if self.x < p.x and self.y < p.y:

return True

return False

def __lt__(self, p):

if self.magnitude() < p.magnitude():

return True

return False

def __lt__(self, p):

my_val = math.sqrt(self.x**2 + self.y**2)

p_val = math.sqrt(p.x**2 + p.y**2)

if my_val < p_val:

return True

return False

A

B

C

D. More than one of the above E. I don’t know

Implement <=

def __le__(self, p):

if self < p or self == p:

return True

return False

def __le__(self, p):

if self.magnitude() =< p.magnitude():

return True

return False

def __le__(self, p):

if self.x <= p.x and self.y <= p.y:

return True

return False

A

B

C

D. More than one of the above E. I don’t know

Next Class

• Classes and Objects

– Read Sections 10.1 – 10.2

• Lab 7 – Due Tuesday at 10 pm

• Prelab 8 – Due in class on Monday

