CS 150: Methods

Cynthia Taylor
Oberlin College
March 19t 2014

Clicker Groups Change

* | will reshuffle groups over spring break

* |f you want to stay with your group, fill out
form on blackboard

* |f you do nothing, your group will change

Methods

 Methods are actions that can be performed by
an object

* We have used many str, list and picture
methods and now we’re writing our own

\F.'(.an){’)){bj’(, -)
6)\(/@\‘ 5719/"()()

Methods versus Functions

* Different calling syntax:
p.move right (10), instead of

mveTTght-{p;—+d)

* First parameter 1S always self, but we don’t
include self when calling the method

— When we C8||Qnove_right (10), self will refer

top y

* |f a method takes two parameters, it is defined
to have three (self and the two “real ones”)

class Thing (object) :
def do it (self, a, b, c):

t is an object of class Thing and d, e, and f are

ﬂeleﬁned—What—l&t-he_pL@per way-to—cattdo_it?

A.do 1t (d,

B.do 1t(Self d, ée
C.do 1t (t, d, e, f)
D.t.do 1t(d, e, f)
(E}¢¢do_it(t*~dT—e, f)

Objects as Strings

* By default, print on some object gives you a
memory address, not a useful representation
of the object

e But all of the built-in objects print nicely.
How?

* The trick is to add a _str_]method that
returns a string representation of the object

/

class Thing (object) : L 45
def 1nit (self, a, b):

self.val = a *b 20

def str (self):

return [’ + str(self.val + 2) + "]’

t = Thing(4, 5)—/ — — R .
print (t)

What is the output of this code?

A.20 C.22

B. [20] 22]
E. Amemory address

Relational Operators

* There are six relational operators: == !5 <<=>
>= —

* Built-in Python objects support all of these
operators. For example, on lists () 1@/)/{} L)</ 3/3)

— L1 == L2 istrue exactly when L1 and L2 are of the
same length and all pairwise objects are == | > <[/ 2,3
— L1 < L2 istrue exactly when the lists are not)/ /j]
equal, and the first pair of different objects has the
element from L1 less than the corresponding element
of L2

— ... and so on for the other four

class Account (object) :-) [
: Wd') ‘ — gicéf

def lnit self, wval —
et _(eelf, yels T — o
self.gold val

) I
f 1f, h :
de /- eq gse other) EWCA

returnléﬁlf.gold==0 and other.gold==5

Which of the following would evaluate to True?
A. Account(50) == Account(50) R<C o p‘\a

B. Account(80) == Account(90) Miif
@Account(O) == Account(5) — (55

AR B
D. Account(0) == Account(0)

E. More than one of the above

Example

e let'sadd eq_and __ne_ methods to our
Point class

* Points are equal when they are both points,
and when the two x-coordinates are equal,
and when the two y-coordinates are equal

* Points are not equal when __eq__ returns
False

 We should explicitly define both _eq and
ne

Write code for eq

Which code for ne s correct?

return not<self == p

— ~ A —
— J (Pj\«{y VL()’/ SJ)]@

def ne (self, p): %Q\{ {~t
0 I

—

-—
-

]

B def ne (self, p):

return self.x == p.x and self.y == p.y O\O}ﬁ‘) S‘le

def ne (self, p):

if self.x =! p.x or self.y !=
p.y:

return True
1

k\~_£iifrn False

D. More than one of the above E. |l don’t know

We want the point closer to the origin to be the
lesser point. Which code is correct?

def 1t (self, p):
A 1f self.x < p.x and self.y < p.y:
return True

et trae (1) (S S| 1D (_Z,y)

7J

def 1t (self, p):

gs\ 1f self.magnitude () < p.magnitude() :
return True

return False

def 1t (self, p):
my val = math.sqgrt(self.x**2 + self.y**2)
p val = math.sqgrt(p.x**2 + p.y**2)
1f my val < p val:
return True

return False

@Aore than one of the above E. |l don’t know

Implement <=

def le (self, p):

if self < p or self == p:
“Teturn True ~

return False

def le (self, p):
B 1f self.magnitude () =< p.magnitude () :
return True

return False

def le (self, p):
1f self.x <= p.x and self.y <= p.y:
C return True

return False

D. More than one of the above E. |l don’t know

Next Class

* Classes and Objects
— Read Sections 10.1 —10.2

 Lab 7 — Due Tuesday at 10 pm

We d

* Prelab 8 — Due in class on Messay

