CS 150: Measuring Program Time

Cynthia Taylor
Oberlin College
April 14th 2013

Recall Timing of 2 Search Functions

* Simple search took several orders of
magnitude longer to run than binary search

Measuring Runtime

* We want to understand how the execution
time for an algorithm increases when the
problem size increases

* One approach: measure the execution time on
different-sized problems

Measuring Runtime: The Problem

* Precise runtimes may not be useful as a way
to describe algorithm performance

 They depend on the specific machine on
which the program is being run

e More useful is an abstract characterization of
the rate at which an algorithm’s runtime
grows

Linear Time

def linear(n):

total = 0
for 1 in range(n):
total += 1

return total

* Alinear increase in the problem size leads to a
linear increase in the execution time.

e The above function is linear-time. What

happens when we call it with 10000007?
20000007 30000007

Linear Time

def linear(n):

total = 0

for 1 in range(n):
total += 1
total += 1

return total

 This function is STILL linear time.

* |f we increase the problem size by d (a linear
increase), the number of steps always
increases by 2d

Linear Time

Execution
time

input

Execution
time

Execution
time

/

input

input

Is This Function Linear Time?

def mystery(n):
total = 0
for 1 in range(n):
total += 1
for 1 in range(n):
total += 1
return total

A. Yes

C. I don’t know

Quadratic Time

def quadratic(n):
total = 0
for 1 in range(n):
for j in range(n):
total += 1
return total

* |Increasing the problem size by fixed
increments causes nonlinear increases in

execution time

* For size n, this function performs a number of
steps proportional to n?

Cubic Time

def quadratic(n):
total = 0
for 1 in range(n):
for j in range(n):
for k in range(n):
total += 1
return total

 This function is even worse!

* For size n, this function performs a number of
steps proportional to n3

This algorithm is:

def mystery(n):
total = 0
for 1 in range(n):
for j in range(10000):
for k in range(50):
total += 1
return total

A. Linear (n)

D. Something else
B. Quadratic (n?)

E. Idon’t know
C. Cubic (n3)

This algorithm is:

def mystery(n):
total = 0
for 1 in range(n):
for j in range(n):
for k in range(50):
total += 1
return total

A. Linear (n)

D. Something else
B. Quadratic (n?)

E. Idon’t know
C. Cubic (n3)

This algorithm is:

N=4:42.10 def f(n):
N =8:8,4,2,10 _ g
N=16: 16, 8,4,2,1,0 sum =
while n > O0:
log n sum = sum + n ** 2
n=n1// 2

return sum

A. Better than linear

D. Worse than quadratic
B. Linear(n)

E. Idon’t know
C. Quadratic (n?)

Order Notation

“Big O” notation
“on the order of” . ..
Some constant times log, n, n, n?, n3, 2", etc

Linear O(n), Quadratic O(n?), Cubic O(n3)

Your coworker tells you he’s found a way to change
your algorithm so it does HALF as much work. Knowing
that the algorithm is currently O(n?), you say:

A. That’s great. This reduces our runtime to O(n) so
it will take less time to run.

B. That’s great. Our runtime stays the same, but it
will finish in around half the time.

C. That doesn’t do anything; our runtime stays the
same, so it takes the same amount of time to
run.

D. That doesn’t do anything; it does reduce our

runtime to O(n) but that doesn’t mean it runs
faster.

The problem size is len(s). This

algorithm is:

def f(s):
num = 0
for cl in s:
for c2 1in s:
if cl == c2:
num = num + 1
return num

A. Better than linear

D. Worse than quadratic
B. Linear(n)

E. Idon’t know
C. Quadratic (n?)

The problem size is len(s). This

algorithm is:

def f(s):
num = 0

for ¢l 1in s:
s2 = s
while len(s2) > 0:
s2 = s2[:1len(s2)//2]

Out for loop — linear O(n)
While loop — O(log n)

O(n log n)

Next Time

* Sorting!

* Prelab 9 — Wednesday in class

